
LECTURE NOTES

ON

DIGITAL LOGIC DESIGN

2018 – 2019

II B. Tech I Semester (Autonomous-R17)

Ms. I. Sheeba, Assistant Professor

CHADALAWADA RAMANAMMA ENGINEERING COLLEGE
(AUTONOMOUS)

Chadalawada Nagar, Renigunta Road, Tirupati – 517 506

 Department of Computer Science and Engineering

II B.Tech I Semester: CSE

Course Code Category Hours / Week Credits Maximum Marks

17CA04306 Core
L T P C

CIE

A
SEEE Total

2 2 - 3 30 70 100

Contact Classes: 34 Tutorial Classes: 34 Practical Classes: Nil Total Classes: 68

Objectives:

The course should enable the students to:

 Analyze and explore the uses of Logic Functions for Building Digital Logic Circuits

 Explore the Combinational Logic Circuits.

 Examine the Operation of Sequential (Synchronous and Asynchronous) Circuits.

 Know the Concepts of Basic Memory System. Unit-I NUMBERS SYSTEMS AND CODES Classes:14

Review of Number Systems, Number Base Conversion.

Binary Arithmetic: Binary Weighted and Non-Weighted Codes.

Complements: Signed Binary Numbers, Error detection and correcting codes, Binary Storage and

Registers, Binary logic. Unit-II Boolean Algebra and Gate Level Minimization Classes:14

Postulates and Theorems, Representation of Switching Functions, SOP and POS Forms, Canonical Forms,

Digital Logic Gate. Karnaugh Maps: Minimization using Three variable, Four variable, Five variable K-

Maps; Don‟t Care Conditions, NAND and NOR implementation, Other Two-level Implementation,

Exclusive –OR function.

Unit-III Design of Combinational Circuits Classes:13

Combinational circuits: Analysis and Design Procedure, Binary Adder and Subtractors, Carry Look-a-head

Adder, Binary Multiplier, Magnitude comparator, BCD Adder, Decoders, Encoders, Multiplexers,

Demultiplexer.

Unit-IV Design of Sequential Circuits Classes: 13

Combinational versus Sequential circuits , Latches, Flip Flops: RS Flip Flop, JK Flip Flop, T Flip Flop, D

Flip Flop, Master-Slave Flip Flop, Flip Flops Excitation Functions, Conversion of one Flip Flop to another

Flip Flop, Shift Registers, Design of Asynchronous and Synchronous Circuits, State Table, State Diagram,

State Reduction and State Assignment for Mealy and Moore Machines.

Unit-V Memory Classes: 14

Random Access Memory, Types of ROM, Memory Decoding, Address and Data Bus, Sequential Memory,

Cache Memory, Programmable Logic Arrays, Memory Hierarchy in terms of Capacity and Access time.

Text Book:

1. M. Morris Mano, “Digital Design”, Pearson Education/PHI, 3
rd
 Edition, 2001.

Reference Books:

1. Charles H. Roth Jr, “Fundamentals of Logic Design”, Thomson Brooks/Cole, 5
th
 Edition, 2004.

2. C. V. S. Rao, “Switching Theory and Logic Design, Pearson Education, 1
st
 Edition, 2005.

3. M. Rafiquzzaman, “Fundamentals of Digital Logic and Micro Computer Design”, John Wiley,

 5
th
 Edition, 2005.

4. Zvi. Kohavi, “Switching and Finite Automata Theory”, Tata McGraw Hill, 2
nd

 Edition, 1991.
Web References:

1. http://www.american.cs.ucdavis.edu/academic/ecs154a.sum14/postscript/cosc205.pdf

2. http://www.engrcs.com/courses/engr250/engr250lecture.pdf

3. http://www.ece.rutgers.edu/~marsic/Teaching/DLD/slides/lec-1.pdf

E-Text Books :

1. https://drive.google.com/file/d/0B4ChICvNGHlfN2NmODE1NjAtZWI5Zi00MmU0LWIyMmQtOTU

3ZGUyMzAwODc1/view

2. https://accessengineeringlibrary.com/browse/digital-logic-design-and-computer-organization-with-

computer-architecture-for-security

3. http://www.ece.rutgers.edu/~marsic/Teaching/DLD/syllabus.html

 Outcomes:

 Realize complex logic functions utilizing programmable logic.

 Design machines for the purpose of manipulating data streams.

 Design complex digital systems.

http://www.ece.rutgers.edu/~marsic/Teaching/DLD/syllabus.html

UNIT -I

BINARY SYSTEMS

 Analog Vs Digital

 Digital Systems

 Binary numbers

 Number base conversions

 Compliments

 Octal and Hexadecimal Numbers

 Signed Binary Numbers

ANALOG Vs DIGITAL:

To learn and understand about the digital logic design, the initial knowledge we require is to

differentiate between analog and digital. The following are fews that differentiate between

analog and digital.

• Analog information is made up of a continuum of values within a given range.

• At its most basic, digital information can assume only one of two possible

values: one/zero, on/off, high/low, true/false, etc.
• Digital Information is less susceptible to noise than analog information

• Exact voltage values are not important, only their class (1 or 0)

• The complexity of operations is reduced, thus it is easier to implement them with

high accuracy in digital form.

DIGITAL SYSTEMS

Digital means electronic technology that generates, stores, and processes data in terms of two

states: positive and non-positive. Positive is expressed or represented by the number 1 and

non-positive by the number 0.

A „digital system‟ is a data technology that uses discrete (discontinuous) values represented

by high and low states known as bits. By contrast, non-digital (or analog) systems use a

continuous range of values to represent information. Although digital representations are

discrete, the information represented can be either discrete, such as numbers, letters or icons,

or continuous, such as sounds, images, and other measurements of continuous systems.

BINARY

Binary describes a numbering scheme in which there are only two possible values for each

digit: 0 and 1. The term also refers to any digital encoding/decoding system in which there are

exactly two possible states. In digital data memory, storage, processing, and communications,

the 0 and 1 values are sometimes called "low" and "high," respectively.

BINARY NUMBER/BINARY NUMBER SYSTEM

The binary number system is a numbering system that represents numeric values using two

unique digits (0 and 1). Most of the computing devices use binary numbering to represent

electronic circuit voltage state, (i.e., on/off switch), which considers 0 voltage input as off and

1 input as on.

This is also known as the base-2 number system (The base-2 system is a positional notation

with a radix of 2), or the binary numbering system. Few examples of binary numbers are as

follows:

• 10

• 111

• 10101

• 11110

COMPLIMENTS

Compliments are used in digital computers to simplify the subtraction operation and for logical

manipulation. Simplifying operations leads to simpler, less expensive circuits to implement the

operations.

There are 2 types of complements for each base r system.

(1) The radix complement

(2) Diminished radix compliment

Radix compliment: Also referred to as the r‟s compliment.

Diminished radix compliment: Also referred to as (r-1)‟s compliment.

OCTAL NUMBERS

The Octal Number System is another type of computer and digital base number system. The

Octal Numbering System is very similar in principle to the previous hexadecimal numbering

system except that in Octal, a binary number is divided up into groups of only 3 bits, with each

group or set of bits having a distinct value of between 000 (0) and 111 (7). Octal numbers

therefore have a range of just “8” digits, (0, 1, 2, 3, 4, 5, 6, 7) making them a Base-8

numbering system and therefore, q is equal to “8”.

HEXADECIMAL NUMBERING SYSTEM: The one main disadvantage of binary numbers

is that the binary string equivalent of a large decimal base-10 number can be quite long. When

working with large digital systems, such as computers, it is common to find binary numbers

consisting of 8, 16 and even 32 digits which makes it difficult to both read and write without

producing errors especially when working with lots of 16 or 32-bit binary numbers. One

common way of overcoming this problem is to arrange the binary numbers into groups or sets

of four bits (4-bits). These groups of 4-bits uses another type of numbering system also

commonly used in computer and digital systems called Hexadecimal Numbers

The “Hexadecimal” or simply “Hex” numbering system uses the Base of 16 system and are a

popular choice for representing long binary values because their format is quite compact and

much easier to understand compared to the long binary strings of 1‟s and 0‟s.

Being a Base-16 system, the hexadecimal numbering system therefore uses 16 (sixteen)

different digits with a combination of numbers from 0 through to 15. In other words, there are

16 possible digit symbols.

Decima Binar Octal Hexadeci

l y mal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

SIGNED BINARY NUMBERS

In mathematics, positive numbers (including zero) are represented as unsigned numbers. That

is we do not put the +ve sign in front of them to show that they are positive numbers.

However, when dealing with negative numbers we do use a -ve sign in front of the number to

show that the number is negative in value and different from a positive unsigned value and the

same is true with signed binary numbers. However, in digital circuits there is no provision

made to put a plus or even a minus sign to a number, since digital systems operate with binary

numbers that are represented in terms of “0‟s” and “1‟s”.

So to represent a positive (N) and a negative (-N) binary number we can use the binary

numbers with sign. For signed binary numbers the most significant bit (MSB) is used as the

sign. If the sign bit is “0”, this means the number is positive. If the sign bit is “1”, then the

number is negative. The remaining bits are used to represent the magnitude of the binary

number in the usual unsigned binary number format.

Positive Signed Binary Numbers.

Negative Signed Binary Numbers

BINARY CODES

In the coding, when numbers, letters or words are represented by a specific group of symbols,

it is said that the number, letter or word is being encoded. The group of symbols is called as a

code. The digital data is represented, stored and transmitted as group of binary bits. This group

is also called as binary code. The binary code is represented by the number as well as

alphanumeric letter.

Advantages of Binary Code

Following is the list of advantages that binary code offers.

 Binary codes are suitable for the computer applications.

 Binary codes are suitable for the digital communications.

 Binary codes make the analysis and designing of digital circuits if we use the binary

codes.

 Since only 0 & 1 are being used, implementation becomes easy.

Classification of binary codes

The codes are broadly categorized into following four categories.

 Weighted Codes

 Non-Weighted Codes

 Binary Coded Decimal Code

 Alphanumeric Codes

 Error Detecting Codes

 Error Correcting Codes

Weighted Codes

Weighted binary codes are those binary codes which obey the positional weight principle.

Each position of the number represents a specific weight. Several systems of the codes are

used to express the decimal digits 0 through 9. In these codes each decimal digit is represented

by a group of four bits.

Non-Weighted Codes

In this type of binary codes, the positional weights are not assigned. The examples of non-

weighted codes are Excess-3 code and Gray code.

Excess-3 code

The Excess-3 code is also called as XS-3 code. It is non-weighted code used to express decimal

numbers. The Excess-3 code words are derived from the 8421 BCD code words adding (0011)2

or (3)10 to each code word in 8421. The excess-3 codes are obtained as follows.

Gray Code

It is the non-weighted code and it is not arithmetic codes. That means there are no specific

weights assigned to the bit position. It has a very special feature that, only one bit will change

each time the decimal number is incremented as shown in fig. As only one bit changes at a

time, the gray code is called as a unit distance code. The gray code is a cyclic code. Gray code

cannot be used for arithmetic operation.

Application of Gray code

 Gray code is popularly used in the shaft position encoders.

 A shaft position encoder produces a code word which represents the angular

position of the shaft.

Binary Coded Decimal (BCD) code

In this code each decimal digit is represented by a 4-bit binary number. BCD is a way

to express each of the decimal digits with a binary code. In the BCD, with four bits we can

represent sixteen numbers (0000 to 1111). But in BCD code only first ten of these are used

(0000 to 1001). The remaining six code combinations i.e. 1010 to 1111 are invalid in BCD.

Advantages of BCD Codes

 It is very similar to decimal system.

 We need to remember binary equivalent of decimal numbers 0 to 9 only

Disadvantages of BCD Codes

 The addition and subtraction of BCD have different rules.

 The BCD arithmetic is little more complicated.

 BCD needs more number of bits than binary to represent the decimal number. So BCD

is less efficient than binary

Alphanumeric codes

A binary digit or bit can represent only two symbols as it has only two states '0' or '1'. But this

is not enough for communication between two computers because there we need many more

symbols for communication. These symbols are required to represent 26 alphabets with capital

and small letters, numbers from 0 to 9, punctuation marks and other symbols.

The alphanumeric codes are the codes that represent numbers and alphabetic characters.

Mostly such codes also represent other characters such as symbol and various instructions

necessary for conveying information. An alphanumeric code should at least represent 10 digits

and 26 letters of alphabet i.e. total 36 items. The following three alphanumeric codes are very

commonly used for the data representation.

 American Standard Code for Information Interchange (ASCII).

 Extended Binary Coded Decimal Interchange Code (EBCDIC).

 Five bit Baudot Code.

ASCII code is a 7-bit code whereas EBCDIC is an 8-bit code. ASCII code is more commonly

used worldwide while EBCDIC is used primarily in large IBM computers.

Error Codes

There are binary code techniques available to detect and correct data during data transmission.

NUMBER BASE CONVERSIONS

There are many methods or techniques which can be used to convert code from one format to

another. We'll demonstrate here the following

 Binary to BCD Conversion

 BCD to Binary Conversion

 BCD to Excess-3

 Excess-3 to BCD

Binary to BCD Conversion

Steps

 Step 1 -- Convert the binary number to decimal.

 Step 2 -- Convert decimal number to BCD.

Example − convert (11101)2 to BCD.

Step 1 − Convert to Decimal

Binary Number − 111012

Calculating Decimal Equivalent −

Step

Binary Number

Decimal Number

Step 1 111012 ((1 × 2
4
) + (1 × 2

3
) + (1 × 2

2
) + (0 × 2

1
) + (1 × 2

0
))10

Step 2 111012 (16 + 8 + 4 + 0 + 1)10

Step 3 111012 2910

Binary Number − 111012 = Decimal Number − 2910

Step 2 − Convert to BCD

Decimal Number − 2910

Calculating BCD Equivalent. Convert each digit into groups of four binary digits equivalent

Step

Decimal Number

Conversion

Step 1 2910 00102 10012

Step 2 2910 00101001BCD

Result

(11101)2 = (00101001)BCD

BCD to Binary Conversion

Steps

 Step 1 -- Convert the BCD number to decimal.

 Step 2 -- Convert decimal to binary.

Example − convert (00101001)BCD to Binary.

Step 1 - Convert to BCD

BCD Number − (00101001)BCD

Calculating Decimal Equivalent. Convert each four digit into a group and get decimal

equivalent for each group.

Step

BCD Number

Conversion

Step 1 (00101001)BCD 00102 10012

Step 2 (00101001)BCD 210 910

Step 3 (00101001)BCD 2910

BCD Number − (00101001)BCD = Decimal Number − 2910

Step 2 - Convert to Binary

Used long division method for decimal to binary conversion.

Decimal Number − 2910

Calculating Binary Equivalent

Step

Operation

Result

Remainder

Step 1 29 / 2 14 1

Step 2 14 / 2 7 0

Step 3 7 / 2 3 1

Step 4 3 / 2 1 1

Step 5 1 / 2 0 1

As mentioned in Steps 2 and 4, the remainders have to be arranged in the reverse order so that

the first remainder becomes the least significant digit (LSD) and the last remainder becomes

the most significant digit (MSD).

Decimal Number − 2910 = Binary Number − 111012

Result

(00101001)BCD = (11101)2

BCD to Excess-3

Steps

 Step 1 -- Convert BCD to decimal.

 Step 2 -- Add (3)10 to this decimal number.

 Step 3 -- Convert into binary to get excess-3 code.

Example − convert (1001)BCD to Excess-3.

Step 1 − Convert to decimal

(1001)BCD = 910

Step 2 − Add 3 to decimal

(9)10 + (3)10 = (12)10

Step 3 − Convert to Excess-3

(12)10 = (1100)2

Result

(1001)BCD = (1100)XS-3

Excess-3 to BCD Conversion

Steps

 Step 1 -- Subtract (0011)2 from each 4 bit of excess-3 digit to obtain the

corresponding BCD code.

Example − convert (10011010)XS-3 to BCD.

Given XS-3 number = 1 0 0 1 1 0 1 0

Subtract (0011)2 = 0 0 1 1 0 0 1 1

 BCD = 0 1 1 0 0 1 1 1

Result

(10011010)XS-3 = (01100111)BCD

UNIT –II

BOOLEAN ALGEBRA :

 Basic Definitions

 Axiomatic Definition of Boolean Algebra

 Basic Theorems and properties of Boolean Algebra

 Boolean Functions

 Canonical and Standard Forms, Other Logic Operations

 Digital Logic Gates

 Integrated Circuits

Boolean Algebra: Boolean algebra, like any other deductive mathematical system, may be

defined with aset of elements, a set of operators, and a number of unproved axioms or

postulates. A set of elements is anycollection of objects having a common property. If S is a

set and x and y are certain objects, then x Î Sdenotes that x is a member of the set S, and y ÏS

denotes that y is not an element of S. A set with adenumerable number of elements is specified

by braces: A = {1,2,3,4}, i.e. the elements of set A are thenumbers 1, 2, 3, and 4. A binary

operator defined on a set S of elements is a rule that assigns to each pair ofelements from S a

unique element from S._ Example: In a*b=c, we say that * is a binary operator if it specifies a

rule for finding c from the pair (a,b)and also if a, b, c Î S.

CLOSURE: The Boolean system is closed with respect to a binary operator if for every pair

of Boolean values,it produces a Boolean result. For example, logical AND is closed in the

Boolean system because it accepts only Boolean operands and produces only Boolean results.

_ A set S is closed with respect to a binary operator if, for every pair of elements of S, the

binary operator specifies a rule for obtaining a unique element of S.

For example, the set of natural numbers N = {1, 2, 3, 4, … 9} is closed with respect to the

binary operator plus (+) by the rule of arithmetic addition, since for any a, b Î N we obtain a

unique c Î N by the operation a + b = c.

ASSOCIATIVE LAW:A binary operator * on a set S is said to be associative whenever (x *

y) * z = x * (y * z) for all x, y, z Î S, forall Boolean values x, y and z.

COMMUTATIVE LAW:

A binary operator * on a set S is said to be commutative whenever x * y = y * x for all x, y, z є

IDENTITY ELEMENT:

A set S is said to have an identity element with respect to a binary operation * on S if there

exists an element e є S with the property e * x = x * e = x for every x є S

BASIC IDENTITIES OF BOOLEAN ALGEBRA

Postulate 1 (Definition): A Boolean algebra is a closed algebraic system containing a set K of

two or more elements and the two operators · and + which refer to logical AND and logical

OR

 x + 0 = x

 x · 0 = 0

 x + 1 = 1

 x · 1 = 1

 x + x = x

 x · x = x

 x + x’ = x

 x · x’ = 0

 x + y = y + x

 xy = yx

 x + (y + z) = (x + y) + z

 x (yz) = (xy) z

 x (y + z) = xy + xz

 x + yz = (x + y)(x + z)

 (x + y)’ = x’ y’

 (xy)’ = x’ + y’

 (x’)’ = x

DeMorgan's Theorem

(a) (a + b)' = a'b'

(b) (ab)' = a' + b'

Generalized DeMorgan's Theorem

(a) (a + b + … z)' = a'b' … z'

(b) (a.b … z)' = a' + b' + … z„

AXIOMATIC DEFINITION OF BOOLEAN ALGEBRA:

1. Closure

a. Closure with respect to (wrt) OR (+)

b. Closure with respect to AND (•)

2. Identity

a. Identity element wrt to OR : 0

b. Identity element wrt to AND : 1

3. Commutative Property

a. Commutative Property wrt to OR : x + y = y + x

b. Commutative Property wrt to AND : x · y = y · x

4. Distributive Property

a. x · (y + z) = (x·y) + (x·z)

b. x + (y·z) = (x + y)(x + z)

5. Existence of Complement

a. x + x‟ = 1

b. x · x‟ = 0

LOGIC GATES

Formal logic: In formal logic, a statement (proposition) is a declarative sentence that is either

true(1) or false (0). It is easier to communicate with computers using formal logic.

• Boolean variable: Takes only two values – either true (1) or false (0). They are used as

basic units of formal logic.

• Boolean algebra: Deals with binary variables and logic operations operating on those

variables.

• Logic diagram: Composed of graphic symbols for logic gates. A simple circuit sketch that

represents inputs and outputs of Boolean functions.

INTEGRATED CIRCUIT

An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a

microchip) is a set of electronic circuits on one small plate ("chip") of semiconductor material,

normally silicon. This can be made much smaller than a discrete circuit made from independent

electronic components. ICs can be made very compact, having up to several billion transistors

and other electronic components in an area the size of a human fingernail.

LEVEL OF INTEGRATION

1.SSI : Small Scale Integration

It has less than 100 components(about 10gates)

2.MSI: Medium Scale Integration

It contains less than 500 components or have more than 10 but less than 100 gates.

3.LSI: Large scale integration

Number of components is between 500 and 300000 or have more than 100gates.

4.VLSI:very large scale integration. process of creating an integrated circuit (IC)

by combining thousands of transistors into a single chip.

DIGITAL LOGIC FAMILIES

Transistor–transistor logic (TTL) is a class of digital circuits built from bipolar junction

transistors (BJT) and resistors. It is called transistor–transistor logic because both the logic

gating function (e.g., AND) and the amplifying function are performed by transistors (contrast

with resistor–transistor logic (RTL) and diode–transistor logic (DTL).

Emitter coupled logic(ECL)

Emitter-coupled logic (ECL) is the fastest logic circuit family available for conventional logic-

system design.4 High speed is achieved by operating all bipolar transistors out of saturation, thus

avoiding storage-time delays, and by keeping the logic signal swings relatively small (about 0.8

V or less), thus reducing the time required to charge and discharge the various load and parasitic

capacitances.

Complementary Metal oxide semiconductor (CMOS): Technology for constructing integrated

circuits. CMOS technology is used in microprocessors, microcontrollers, static RAM, and other

digital logic circuits. CMOS technology is also used for several analog circuits such as image

sensors (CMOS sensor), data converters, and highly integrated transceivers for many types of

communication.

INTRODUCTION

Minimization of switching functions is to obtain logic circuits with least circuit complexity. This

goal is very difficult since how a minimal function relates to the implementation technology is

important. For example, If we are building a logic circuit that uses discrete logic made of small

scale Integration ICs(SSIs) like 7400 series, in which basic building block are constructed and

are available for use. The goal of minimization would be to reduce the number of ICs and not the

logic gates. For example, If we require two 6 and gates and 5 Or gates,we would require 2 AND

ICs(each has 4 AND gates) and one OR IC. (4 gates). On the other hand if the same logic could

be implemented with only 10 nand gates, we require only 3 ICs. Similarly when we design logic

on Programmable device, we may implement the design with certain number of gates and

remaining gates may not be used. Whatever may be the criteria of minimization we would be

guided by the following:

• Boolean algebra helps us simplify expressions and circuits

• Karnaugh Map: A graphical technique for simplifying a Boolean expression into either

 form: minimal sum of products (MSP)

• minimal product of sums (MPS)

• Goal of the simplification.

• There are a minimal number of product/sum terms

• Each term has a minimal number of literals

• Circuit-wise, this leads to a minimal two-level implementation

K-map Simplification

• Imagine a two-variable sum of minterms

• x‟y‟ + x‟y

• Both of these minterms appear in the top row of a Karnaugh map, which means that they

both contain the literal x‟

K-Maps for 2 to 5 Variables

K-Map method is most suitable for minimizing Boolean functions of 2 variables to 5 variables.

Now, let us discuss about the K-Maps for 2 to 5 variables one by one.

2 Variable K-Map

The number of cells in 2 variable K-map is four, since the number of variables is two. The

following figure shows 2 variable K-Map.

 There is only one possibility of grouping 4 adjacent min terms.

 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m2,

m3), (m0, m2) and (m1, m3)}.

3 Variable K-Map

The number of cells in 3 variable K-map is eight, since the number of variables is three. The

following figure shows 3 variable K-Map.

 There is only one possibility of grouping 8 adjacent min terms.

 The possible combinations of grouping 4 adjacent min terms are {(m0, m1, m3, m2), (m4,

m5, m7, m6), (m0, m1, m4, m5), (m1, m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, m6, m4)}.

 The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m1, m3),

(m3, m2), (m2, m0), (m4, m5), (m5, m7), (m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, m7)

and (m2, m6)}.

 If x=0, then 3 variable K-map becomes 2 variable K-map.

4 Variable K-Map

The number of cells in 4 variable K-map is sixteen, since the number of variables is four. The

following figure shows 4 variable K-Map.

 There is only one possibility of grouping 16 adjacent min terms.

 Let R1, R2, R3 and R4 represents the min terms of first row, second row, third row and

fourth row respectively. Similarly, C1, C2, C3 and C4 represents the min terms of first

column, second column, third column and fourth column respectively. The possible

combinations of grouping 8 adjacent min terms are {(R1, R2), (R2, R3), (R3, R4), (R4, R1),

(C1, C2), (C2, C3), (C3, C4), (C4, C1)}.

 If w=0, then 4 variable K-map becomes 3 variable K-map.

5 Variable K-Map

The number of cells in 5 variable K-map is thirty-two, since the number of variables is 5. The

following figure shows 5 variable K-Map.

 There is only one possibility of grouping 32 adjacent min terms.

 There are two possibilities of grouping 16 adjacent min terms. i.e., grouping of min

terms from m0 to m15 and m16 to m31.

 If v=0, then 5 variable K-map becomes 4 variable K-map.

In the above all K-maps, we used exclusively the min terms notation. Similarly, you can use

exclusively the Max terms notation.

Minimization of Boolean Functions using K-Maps

If we consider the combination of inputs for which the Boolean function is „1‟, then we will get

the Boolean function, which is in standard sum of products form after simplifying the K-map.

Similarly, if we consider the combination of inputs for which the Boolean function is „0‟, then

we will get the Boolean function, which is in standard product of sums form after simplifying

the K-map.

Example

Let us simplify the following Boolean function, f(W, X, Y, Z)= WX’Y’ + WY + W’YZ’ using

K-map.

The given Boolean function is in sum of products form. It is having 4 variables W, X, Y & Z.

So, we require 4 variable K-map. The 4 variable K-map with ones corresponding to the given

product terms is shown in the following figure.

Here, 1s are placed in the following cells of K-map.

 The cells, which are common to the intersection of Row 4 and columns 1 & 2 are

corresponding to the product term, WX’Y’.

 The cells, which are common to the intersection of Rows 3 & 4 and columns 3 & 4 are

corresponding to the product term, WY.

 The cells, which are common to the intersection of Rows 1 & 2 and column 4 are

corresponding to the product term, W’YZ’.

There are no possibilities of grouping either 16 adjacent ones or 8 adjacent ones. There are three

possibilities of grouping 4 adjacent ones. After these three groupings, there is no single one left

as ungrouped. So, we no need to check for grouping of 2 adjacent ones. The 4 variable K-

map with these three groupings is shown in the following figure.

Here, we got three prime implicants WX‟, WY & YZ‟

Therefore, the simplified Boolean function is

f= WX’ + WY + YZ’

 UNIT-III

Combinational Logic

 Logic circuits for digital systems may be combinational or sequential.

 A combinational circuit consists of input variables, logic gates, and output variables

Analysis procedure

To obtain the output Boolean functions from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary symbols.

Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled gates

with other arbitrary symbols. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output Boolean

functions in terms of input variables.

Design Procedure:

1. The problem is stated
2. The number of available input variables and required output variables is
determined. 3.The input and output variables are assigned letter symbols.
4.The truth table that defines the required relationship between inputs and outputs is derived.

5.The simplified Boolean function for each output is obtained.
6.The logic diagram is drawn.

Binary Adder

The most basic arithmetic operation is addition. The circuit, which performs the addition of two

binary numbers is known as Binary adder. First, let us implement an adder, which performs

the addition of two bits.

Half Adder

Half adder is a combinational circuit, which performs the addition of two binary numbers A and

B are of single bit. It produces two outputs sum, S & carry, C.

The Truth table of Half adder is shown below.

Inputs Outputs

A B C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Let, sum, S is the Least significant bit and carry, C is the Most significant bit of the resultant

sum. For first three combinations of inputs, carry, C is zero and the value of S will be either zero

or one based on the number of ones present at the inputs. But, for last combination of inputs,

carry, C is one and sum, S is zero, since the resultant sum is two.

From Truth table, we can directly write the Boolean functions for each output as

 S=A⊕B

 C=AB

We can implement the above functions with 2-input Ex-OR gate & 2-input AND gate.

The circuit diagram of Half adder is shown in the following figure.

In the above circuit, a two input Ex-OR gate & two input AND gate produces sum, S & carry, C

respectively. Therefore, Half-adder performs the addition of two bits.

Full Adder

Full adder is a combinational circuit, which performs the addition of three bits A, B and Cin.

Where, A & B are the two parallel significant bits and Cin is the carry bit, which is generated

from previous stage. This Full adder also produces two outputs sum, S & carry, Cout, which are

similar to Half adder.

The Truth table of Full adder is shown below.

Inputs Outputs

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Let, sum, S is the Least significant bit and carry, Cout is the Most significant bit of resultant sum.

It is easy to fill the values of outputs for all combinations of inputs in the truth table. Just count

the number of ones present at the inputs and write the equivalent binary number at outputs. If

Cin is equal to zero, then Full adder truth table is same as that of Half adder truth table.

We will get the following Boolean functions for each output after simplification.

S=A⊕B⊕Cin

 cout=AB+(A⊕B)cin

he sum, S is equal to one, when odd number of ones present at the inputs. We know that Ex-OR

gate produces an output, which is an odd function. So, we can use either two 2input Ex-OR gates

or one 3-input Ex-OR gate in order to produce sum, S. We can implement carry, Cout using two

2-input AND gates & one OR gate. The circuit diagram of Full adder is shown in the following

figure.

.

This adder is called as Full adder because for implementing one Full adder, we require two Half

adders and one OR gate. If Cin is zero, then Full adder becomes Half adder. We can verify it

easily from the above circuit diagram or from the Boolean functions of outputs of Full adder.

4-bit Binary Adder

The 4-bit binary adder performs the addition of two 4-bit numbers. Let the 4-bit binary

numbers, A=A3A2A1A0A=A3A2A1A0 and B=B3B2B1B0B=B3B2B1B0. We can implement

4-bit binary adder in one of the two following ways.

 Use one Half adder for doing the addition of two Least significant bits and three Full

adders for doing the addition of three higher significant bits.

 Use four Full adders for uniformity. Since, initial carry Cinis zero, the Full adder which is

used for adding the least significant bits becomes Half adder.

For the time being, we considered second approach. The block diagram of 4-bit binary adder is

shown in the following figure.

.

Here, the 4 Full adders are cascaded. Each Full adder is getting the respective bits of two parallel

inputs A & B. The carry output of one Full adder will be the carry input of subsequent higher

order Full adder. This 4-bit binary adder produces the resultant sum having at most 5 bits. So,

carry out of last stage Full adder will be the MSB.

In this way, we can implement any higher order binary adder just by cascading the required

number of Full adders. This binary adder is also called as ripple carry (binary) adder because

the carry propagates (ripples) from one stage to the next stage.

Binary Subtractor

The circuit, which performs the subtraction of two binary numbers is known as Binary

subtractor. We can implement Binary subtractor in following two methods.

 Cascade Full subtractors

 2‟s complement method

In first method, we will get an n-bit binary subtractor by cascading „n‟ Full subtractors. So, first

you can implement Half subtractor and Full subtractor, similar to Half adder & Full adder.

Then, you can implement an n-bit binary subtractor, by cascading „n‟ Full subtractors. So, we

will be having two separate circuits for binary addition and subtraction of two binary numbers.

In second method, we can use same binary adder for subtracting two binary numbers just by

doing some modifications in the second input. So, internally binary addition operation takes

place but, the output is resultant subtraction.

We know that the subtraction of two binary numbers A & B can be written as,

A−B=A+(2′scomplimentofB)

 ⇒A−B=A+(1′scomplimentofB)+1

4-bit Binary Subtractor:

The 4-bit binary subtractor produces the subtraction of two 4-bit numbers. Let the 4bit binary

numbers, A=A3A2A1A0A=A3A2A1A0 and B=B3B2B1B0B=B3B2B1B0. Internally, the

operation of 4-bit Binary subtractor is similar to that of 4-bit Binary adder. If the normal bits of

binary number A, complemented bits of binary number B and initial carry (borrow), Cin as one

are applied to 4-bit Binary adder, then it becomes 4-bit Binary subtractor. The block

diagram of 4-bit binary subtractor is shown in the following figure.

This 4-bit binary subtractor produces an output, which is having at most 5 bits. If Binary number

A is greater than Binary number B, then MSB of the output is zero and the remaining bits hold

the magnitude of A-B. If Binary number A is less than Binary number B, then MSB of the output

is one. So, take the 2‟s complement of output in order to get the magnitude of A-B.

Binary Adder / Subtractor

The circuit, which can be used to perform either addition or subtraction of two binary numbers

at any time is known as Binary Adder / subtractor. Both, Binary adder and Binary subtractor

contain a set of Full adders, which are cascaded. The input bits of binary number A are directly

applied in both Binary adder and Binary subtractor.

There are two differences in the inputs of Full adders that are present in Binary adder and

Binary subtractor.

 The input bits of binary number B are directly applied to Full adders in Binary adder,

whereas the complemented bits of binary number B are applied to Full adders in Binary

subtractor.

 The initial carry, C0 = 0 is applied in 4-bit Binary adder, whereas the initial carry

(borrow), C0 = 1 is applied in 4-bit Binary subtractor.

We know that a 2-input Ex-OR gate produces an output, which is same as that of first input

when other input is zero. Similarly, it produces an output, which is complement of first input

when other input is one.

Therefore, we can apply the input bits of binary number B, to 2-input Ex-OR gates. The other

input to all these Ex-OR gates is C0. So, based on the value of C0, the Ex-OR gates produce

either the normal or complemented bits of binary number B.

4-bit Binary Adder / Subtractor

The 4-bit binary adder / subtractor produces either the addition or the subtraction of two 4-bit

numbers based on the value of initial carry or borrow, C0. Let the 4-bit binary

numbers, A=A3A2A1A0A=A3A2A1A0 and B=B3B2B1B0B=B3B2B1B0. The operation of 4-

bit Binary adder / subtractor is similar to that of 4-bit Binary adder and 4-bit Binary subtractor.

Apply the normal bits of binary numbers A and B & initial carry or borrow, C0 from externally

to a 4-bit binary adder. The block diagram of 4-bit binary adder / subtractor is shown in the

following figure.

If initial carry, C0 is zero, then each full adder gets the normal bits of binary numbers A & B.

So, the 4-bit binary adder / subtractor produces an output, which is the addition of two binary

numbers A & B.

If initial borrow, 𝐶0 is one, then each full adder gets the normal bits of binary number A &

complemented bits of binary number B. So, the 4-bit binary adder / subtractor produces an

output, which is the subtraction of two binary numbers A & B.

Decoder is a combinational circuit that has „n‟ input lines and maximum of 2
n
 output lines. One

of these outputs will be active High based on the combination of inputs present, when the

decoder is enabled. That means decoder detects a particular code. The outputs of the decoder

are nothing but the min termsof „n‟ input variables (lines), when it is enabled.

2 to 4 Decoder:

Let 2 to 4 Decoder has two inputs A1 & A0 and four outputs Y3, Y2, Y1 & Y0. The block

diagram of 2 to 4 decoder is shown in the following figure.

One of these four outputs will be „1‟ for each combination of inputs when enable, E is „1‟.

The Truth table of 2 to 4 decoder is shown below.

Enable Inputs Outputs

E A1 A0 Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

From Truth table, we can write the Boolean functions for each output as

Y3=E.A1.A0Y3=E.A1.A0

Y2=E.A1.A0′Y2=E.A1.A0′

Y1=E.A1′.A0Y1=E.A1′.A0

 Y0=E.A1′.A0′

The circuit diagram of 2 to 4 decoder is shown in the following figure.

Therefore, the outputs of 2 to 4 decoder are nothing but the min terms of two input variables

A1 & A0, when enable, E is equal to one. If enable, E is zero, then all the outputs of decoder will

be equal to zero.

Similarly, 3 to 8 decoder produces eight min terms of three input variables A2, A1 & A0 and 4 to

16 decoder produces sixteen min terms of four input variables A3, A2, A1 & A0.

Encoder:

An Encoder is a combinational circuit that performs the reverse operation of Decoder. It has

maximum of 2
n
 input lines and „n‟ output lines. It will produce a binary code equivalent to the

input, which is active High. Therefore, the encoder encodes 2
n
input lines with „n‟ bits. It is

optional to represent the enable signal in encoders.

4 to 2 Encoder

Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. The block

diagram of 4 to 2 Encoder is shown in the following figure.

The Truth table of 4 to 2 encoder is shown below.

Inputs Outputs

Y3 Y2 Y1 Y0 A1 A0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

From Truth table, we can write the Boolean functions for each output as

A1=Y3+Y2A1=Y3+Y2

A0=Y3+Y1A0=Y3+Y1

We can implement the above two Boolean functions by using two input OR gates. The circuit

diagram of 4 to 2 encoder is shown in the following figure.

Multiplexer is a combinational circuit that has maximum of 2
n
data inputs, „n‟ selection lines

and single output line. One of these data inputs will be connected to the output based on the

values of selection lines.

Since there are „n‟ selection lines, there will be 2
n
 possible combinations of zeros and ones. So,

each combination will select only one data input.

4x1 Multiplexer:

4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0 and one output Y.

The block diagram of 4x1 Multiplexer is shown in the following figure.

One of these 4 inputs will be connected to the output based on the combination of inputs present

at these two selection lines. Truth table of 4x1 Multiplexer is shown below.

Selection Lines Output

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

From Truth table, we can directly write the Boolean functionfor output, Y as

Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I2Y=S1′S0′I0+S1′S0I1+S1S0′I2+S1S0I2

We can implement this Boolean function using Inverters, AND gates & OR gate.

The circuit diagram of 4x1 multiplexer is shown in the following figure.

De-Multiplexer is a combinational circuit that performs the reverse operation of Multiplexer. It

has single input, „n‟ selection lines and maximum of 2
n
 outputs. The input will be connected to

one of these outputs based on the values of selection lines.

Since there are „n‟ selection lines, there will be 2
n
 possible combinations of zeros and ones. So,

each combination can select only one output. De-Multiplexer is also called as De-Mux.

1x4 De-Multiplexer :

1x4 De-Multiplexer has one input I, two selection lines, s1 & s0and four outputs Y3, Y2,

Y1 &Y0. The block diagram of 1x4 De-Multiplexer is shown in the following figure.

The single input „I‟ will be connected to one of the four outputs, Y3 to Y0 based on the values of

selection lines s1 & s0. The Truth table of 1x4 De-Multiplexer is shown below.

Selection Inputs Outputs

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 I

0 1 0 0 I 0

1 0 0 I 0 0

1 1 I 0 0 0

From the above Truth table, we can directly write the Boolean functions for each output as

Y3=s1s0IY3=s1s0I

Y2=s1s0′IY2=s1s0′I

Y1=s1′s0IY1=s1′s0I

Y0=s1′s0′IY0=s1′s0′I

We can implement these Boolean functions using Inverters & 3-input AND gates. The circuit

diagram of 1x4 De-Multiplexer is shown in the following figure.

UNIT -IV

Sequential Circuits

The following figure shows the block diagram of sequential circuit.

This sequential circuit contains a set of inputs and output(s). The output(s) of sequential circuit

depends not only on the combination of present inputs but also on the previous output(s).

Previous output is nothing but the present state. Therefore, sequential circuits contain

combinational circuits along with memory (storage) elements. Some sequential circuits may not

contain combinational circuits, but only memory elements.

Following table shows the differences between combinational circuits and sequential circuits.

Combinational Circuits Sequential Circuits

Outputs depend only on

present inputs.

Outputs depend on both present inputs

and present state.

Feedback path is not present. Feedback path is present.

Memory elements are not

required.

Memory elements are required.

Clock signal is not required. Clock signal is required.

Easy to design. Difficult to design.

Types of Sequential Circuits

Following are the two types of sequential circuits −

 Asynchronous sequential circuits

 Synchronous sequential circuits

Asynchronous sequential circuits

If some or all the outputs of a sequential circuit do not change (affect) with respect to active

transition of clock signal, then that sequential circuit is called as Asynchronous sequential

circuit.Therefore, most of the outputs of asynchronous sequential circuits are not in

synchronous with either only positive edges or only negative edges of clock signal.

Synchronous sequential circuits

If all the outputs of a sequential circuit change (affect) with respect to active transition of clock

signal, then that sequential circuit is called as Synchronous sequential circuit. That means, all

the outputs of synchronous sequential circuits change (affect) at the same time. Therefore, the

outputs of synchronous sequential circuits are in synchronous with either only positive edges or

only negative edges of clock signal.

Clock Signal and Triggering

In this section, let us discuss about the clock signal and types of triggering one by one.

Clock signal

Clock signal is a periodic signal and its ON time and OFF time need not be the same. We can

represent the clock signal as a square wave, when both its ON time and OFF time are same.

This clock signal is shown in the following figure.

This signal stays at logic High (5V) for some time and stays at logic Low (0V) for equal amount

of time. This pattern repeats with some time period. In this case, the time period will be equal

to either twice of ON time or twice of OFF time.

Types of Triggering

Following are the two possible types of triggering that are used in sequential circuits.

 Level triggering

 Edge triggering

Level triggering

There are two levels, namely logic High and logic Low in clock signal. Following are the

two types of level triggering.

 Positive level triggering

 Negative level triggering

Edge triggering

There are two types of transitions that occur in clock signal. That means, the clock signal

transitions either from Logic Low to Logic High or Logic High to Logic Low.

Following are the two types of edge triggering based on the transitions of clock signal.

 Positive edge triggering

 Negative edge triggering

There are two types of memory elements based on the type of triggering that is suitable to

operate it.

 Latches

 Flip-flops

Latches operate with enable signal, which is level sensitive. Whereas, flip-flops are edge

sensitive. We will discuss about flip-flops in next chapter. Now, let us discuss about SR Latch

& D Latch one by one.

SR Latch

SR Latch is also called as Set Reset Latch. This latch affects the outputs as long as the enable,

E is maintained at „1‟. The circuit diagram of SR Latch is shown in the following figure.

This circuit has two inputs S & R and two outputs Q(t) & Q(t)‟. The upper NOR gate has two

inputs R & complement of present state, Q(t)‟ and produces next state, Q(t+1) when enable, E is

„1‟.

Similarly, the lower NOR gate has two inputs S & present state, Q(t) and produces complement

of next state, Q(t+1)‟ when enable, E is „1‟.

We know that a 2-input NOR gate produces an output, which is the complement of another

input when one of the input is „0‟. Similarly, it produces „0‟ output, when one of the input is „1‟.

The following table shows the state table of SR latch.

S R Q(t+1)

0 0 Q(t)

0 1 0

1 0 1

1 1 -

D Latch

There is one drawback of SR Latch. That is the next state value can‟t be predicted when both

the inputs S & R are one. So, we can overcome this difficulty by D Latch. It is also called as

Data Latch. The circuit diagram of D Latch is shown in the following figure.

The following table shows the state table of D latch.

D Q(t+1)

0 0

1 1

In first method, cascade two latches in such a way that the first latch is enabled for every

positive clock pulse and second latch is enabled for every negative clock pulse. So that the

combination of these two latches become a flip-flop.

In second method, we can directly implement the flip-flop, which is edge sensitive. In this

chapter, let us discuss the following flip-flops using second method.

 SR Flip-Flop

 D Flip-Flop

 JK Flip-Flop

 T Flip-Flop

SR Flip-Flop

SR flip-flop operates with only positive clock transitions or negative clock transitions. Whereas,

SR latch operates with enable signal. The circuit diagram of SR flip-flop is shown in the

following figure.

The following table shows the state table of SR flip-flop.

S R Q(t+1)

0 0 Q(t+1)

0 1 0

1 0 1

1 1 -

The following table shows the characteristic table of SR flip-flop.

Present Inputs Present State Next State

S R Q(t) Q(t+1)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 X

1 1 1 X

D Flip-Flop

D flip-flop operates with only positive clock transitions or negative clock transitions. Whereas,

D latch operates with enable signal. That means, the output of D flip-flop is insensitive to the

changes in the input, D except for active transition of the clock signal. The circuit diagram of

D flip-flop is shown in the following figure.

The following table shows the state table of D flip-flop.

D Q(t+1)

0 0

0 1

From the above state table, we can directly write the next state equation as Q(t+1)=D

JK Flip-Flop

JK flip-flop is the modified version of SR flip-flop. It operates with only positive clock

transitions or negative clock transitions. The circuit diagram of JK flip-flop is shown in the

following figure.

The following table shows the state table of JK flip-flop.

J K Q(t+1)

0 0 Q(t)

0 1 0

1 0 1

1 1 Q(t)'

The following table shows the characteristic table of JK flip-flop.

Present Inputs Present State Next State

J K Q(t) Q(t+1)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

T Flip-Flop

T flip-flop is the simplified version of JK flip-flop. It is obtained by connecting the same input

„T‟ to both inputs of JK flip-flop. It operates with only positive clock transitions or negative

clock transitions. The circuit diagram of T flip-flop is shown in the following figure.

The following table shows the state table of T flip-flop.

D Q(t+1)

0 Q(t)

1 Q(t)‟

The following table shows the characteristic table of T flip-flop.

Inputs Present State Next State

T Q(t) Q(t+1)

0 0 0

0 1 1

1 0 1

1 1 0

From the above characteristic table, we can directly write the next state equation as

Q(t+1)=T′Q(t)+TQ(t)′Q(t+1)=T′Q(t)+TQ(t)′

⇒Q(t+1)=T⊕Q(t)

shift register:

If the register is capable of shifting bits either towards right hand side or towards left hand side

is known as shift register. An „N‟ bit shift register contains „N‟ flip-flops. Following are the

four types of shift registers based on applying inputs and accessing of outputs.

 Serial In - Serial Out shift register

 Serial In - Parallel Out shift register

 Parallel In - Serial Out shift register

 Parallel In - Parallel Out shift register

Serial In - Serial Out (SISO) Shift Register

The shift register, which allows serial input and produces serial output is known as Serial In –

Serial Out (SISO) shift register. The block diagram of 3-bit SISO shift register is shown in the

following figure.

This block diagram consists of three D flip-flops, which are cascaded. That means, output of

one D flip-flop is connected as the input of next D flip-flop. All these flip-flops are synchronous

with each other since, the same clock signal is applied to each one.

In this shift register, we can send the bits serially from the input of left most D flip-flop. Hence,

this input is also called as serial input. For every positive edge triggering of clock signal, the

data shifts from one stage to the next. So, we can receive the bits serially from the output of

right most D flip-flop. Hence, this output is also called as serial output.

Serial In - Parallel Out (SIPO) Shift Register

The shift register, which allows serial input and produces parallel output is known as Serial In –

Parallel Out (SIPO) shift register. The block diagram of 3-bit SIPO shift register is shown in

the following figure.

This circuit consists of three D flip-flops, which are cascaded. That means, output of one D flip-

flop is connected as the input of next D flip-flop. All these flip-flops are synchronous with each

other since, the same clock signal is applied to each one.

In this shift register, we can send the bits serially from the input of left most D flip-flop. Hence,

this input is also called as serial input. For every positive edge triggering of clock signal, the

data shifts from one stage to the next. In this case, we can access the outputs of each D flip-flop

in parallel. So, we will get parallel outputs from this shift register.

Design of Asynchronous and Synchronous Circuits:

The synchronous sequential circuits change (affect) their states for every positive (or negative)

transition of the clock signal based on the input. So, this behavior of synchronous sequential

circuits can be represented in the graphical form and it is known as state diagram.

A synchronous sequential circuit is also called as Finite State Machine (FSM), if it has finite

number of states. There are two types of FSMs.

 Mealy State Machine

 Moore State Machine

Now, let us discuss about these two state machines one by one.

Mealy State Machine

A Finite State Machine is said to be Mealy state machine, if outputs depend on both present

inputs & present states. The block diagram of Mealy state machine is shown in the following

figure.

As shown in figure, there are two parts present in Mealy state machine. Those are

combinational logic and memory. Memory is useful to provide some or part of previous

outputs (present states) as inputs of combinational logic.

So, based on the present inputs and present states, the Mealy state machine produces outputs.

Therefore, the outputs will be valid only at positive (or negative) transition of the clock signal.

The state diagram of Mealy state machine is shown in the following figure.

In the above figure, there are three states, namely A, B & C. These states are labelled

inside the circles & each circle corresponds to one state. Transitions between these states are

represented with directed lines. Here, 0 / 0, 1 / 0 & 1 / 1 denotes input / output. In the above

figure, there are two transitions from each state based on the value of input, x.

Moore State Machine

A Finite State Machine is said to be Moore state machine, if outputs depend only on present

states. The block diagram of Moore state machine is shown in the following figure.

As shown in figure, there are two parts present in Moore state machine. Those are

combinational logic and memory. In this case, the present inputs and present states determine

the next states. So, based on next states, Moore state machine produces the outputs. Therefore,

the outputs will be valid only after transition of the state.

The state diagram of Moore state machine is shown in the following figure.

 In the above figure, there are four states, namely A, B, C & D. These states and the

respective outputs are labeled inside the circles. Here, only the input value is labeled on each

transition. In the above figure, there are two transitions from each state based on the value of

input, x.

UNIT -V

Memory:

READ-ONLY MEMORY

Read-only memory (ROM) is a type of storage medium that permanently stores data on personal

computers (PCs) and other electronic devices. It contains the programming needed to start a PC,

which is essential for boot-up; it performs major input/output tasks and holds programs or

software instructions.

Because ROM is read-only, it cannot be changed; it is permanent and non-volatile, meaning it

also holds its memory even when power is removed. By contrast, random access memory (RAM)

is volatile; it is lost when power is removed.

There are numerous ROM chips located on the motherboard and a few on expansion boards. The

chips are essential for the basic input/output system (BIOS), boot up, reading and writing to

peripheral devices, basic data management and the software for basic processes for certain

utilities.

RANDOM ACCESS MEMORY

RAM (random access memory) is the place in a computing device where the operating system

(OS), application programs and data in current use are kept so they can be quickly reached by the

device's processor. RAM is much faster to read from and write to than other kinds of storage in a

computer, such as a hard disk drive (HDD), solid-state drive (SSD) or optical drive. Data

remains in RAM as long as the computer is running. When the computer is turned off, RAM

loses its data. When the computer is turned on again, the OS and other files are once again

loaded into RAM, usually from an HDD or SSD.

RAM TYPES

(1)Dynamic random access memory: DRAM is what makes up the typical computing device

RAM and, as noted above, requires constant power to hold on to stored data.

(2)Static random access memory.:SRAM doesn't need constant power to hold on to data, but

the way the memory chips are made means they are much larger and thousands of times more

expensive than an equivalent amount of DRAM. However, SRAM is significantly faster than

DRAM. The price and speed differences mean SRAM is mainly used in small amounts as cache

memory inside a device's processor.

PROGRAMMABLE LOGIC ARRAY

A programmable logic array (PLA) has a programmable AND array at the inputs and

programmable OR array at the outputs. The PLA has a programmable AND array instead of

hard-wired AND array. The number of AND gates in the programmable AND array are usually

much less and the number of inputs of each of the OR gates equal to the number of AND gates.

The OR gate generates an arbitrary Boolean function of minterms equal to the number of AND

gates. Figure below shows the PLA architecture with four input lines, a programmable array of

eight AND gates at the input and a programmable array of two OR gates at the output.

ADVANTAGES

PLA architecture more efficient than a PROM.

DISADVANTAGE

PLA architecture has two sets of programmable fuses due to which PLA devices are difficult to

manufacture, program and test.

PROGRAMMABLE ARRAY LOGIC

Programmable array logic (PAL) has a programmable AND array at the input and a fixed OR

array at the output. The programmable AND array of a PAL architecture is same as that of the

PLA architecture. The number of programmable AND gates in PAL architecture are smaller than

the number of minterms. The OR array is fixed and the AND outputs are divided between OR

gates.

Memory decoding:

Memory decoding :n The equivalent logic of a binary cell that stores one bit of information is shown

below. Read/Write = 0, select = 1, input data to S-R latch Read/Write = 1, select = 1, output data from S-

R latch.

Cache memory:

Cache memory is a small amount of fast memory

∗ Placed between two levels of memory hierarchy

» To bridge the gap in access times

– Between processor and main memory (our focus)

 – Between main memory and disk (disk cache)

 ∗ Expected to behave like a large amount of fast memory

Levels of memory Hierarchy:

